Personal tools
You are here: Home / Users / Ralf Hemmecke / FriCAS / How to run FriCAS in a virtual machine

How to run FriCAS in a virtual machine

Explains how to download and install a virtual appliance that contains FriCAS

FriCAS is a free Computer Algebra System.

Download and import the virtual machine

  1. As a prerequisite you should have a virtual machine player installed. The virtual machine below was created with Oracle's VirtualBox, but since it was exported into a standard format, it should also be possible to import it into VMware player, Windows Virtual PC, and others.
  2. Download the virtual appliance fricas.ova (or try the VirtualBox disk image fricas.vdi).
    sha1sum fricas.*
    4b4423161597c8d546d75fe22f0ccffcafc30f92  fricas.ova
    b25343551ce4a4a34eb68b8f07bc60cfe3a2d482  fricas.vdi
    
  3. Start VirtualBox and got to File->Import Appliance.
  4. Choose fricas.ova and click "Import". (For those that do not use fricas.ova: You first have to create a new VirtualBox virtual machine and add fricas.vdi as an existing disk image. The fricas.vdi file will probably not work with VMWare or VirtualPC.)

Do some computations inside FriCAS

  1. Start the fricas virtual machine.
  2. Log in as "me" (password "me").
  3. Click on the little yellow icon on the bottom bar or start a terminal and type "efricas&" (without quotes).
  4. Two windows will pop up. One contains the documentation and the other one is your input window.
  5. The Fricas prompt looks like "(1) -> " where the number will increase with every input.
  6. Computations with permutations.
    (1) -> P:=Permutation Integer
    
       (1)  Permutation(Integer)
                                                                       Type: Type
    (2) -> p(x)==coercePreimagesImages([[i for i in 1..#x], x])$P;
                                                                       Type: Void
    (3) -> show(x) == (n:=5; matrix [[i for i in 1..n],[x i for i in 1..n]]);
                                                                       Type: Void
    (4) -> f := p [3,4,2,5,1]; g := p [3,5,2,4,1]; h := p [5,1,3,4,2];
                                                       Type: Permutation(Integer)
    (5) -> show(g * h * f)
    
    +1 2 3 4 5+ (5) | | +2 4 3 5 1+ Type: Matrix(Integer) (6) -> show(g^2*h^2) +1 2 3 4 5+ (6) | | +1 3 5 4 2+ Type: Matrix(Integer) (7) -> show(g^(-1) * h^(-1)) +1 2 3 4 5+ (7) | | +3 2 1 4 5+ Type: Matrix(Integer)
  7. Computations in finite rings and fields.
    (1) -> Z5 := PrimeField 5
    
       (1)  PrimeField(5)
                                                                       Type: Type
    (2) -> a: Z5 := 3;   b: Z5 := 2;
    
                                                              Type: PrimeField(5)
    (3) -> a+b
    
       (3)  0
                                                              Type: PrimeField(5)
    (4) -> a*b
    
       (4)  1
                                                              Type: PrimeField(5)
    (5) -> a/b
    
       (5)  4
                                                              Type: PrimeField(5)
    (6) -> Z6 := IntegerMod 6
    
       (6)  IntegerMod(6)
                                                                       Type: Type
    (7) -> u: Z6 := 2; v: Z6 := 3;
    
                                                              Type: IntegerMod(6)
    (8) -> u+v
    
       (8)  5
                                                              Type: IntegerMod(6)
    (9) -> u*v
    
       (9)  0
                                                              Type: IntegerMod(6)
    (10) -> -- Z6 is not a field, i.e. there is no division
    (10) -> u/v
       There are 12 exposed and 12 unexposed library operations named /
          having 2 argument(s) but none was determined to be applicable.
          Use HyperDoc Browse, or issue
                                    )display op /
          to learn more about the available operations. Perhaps
          package-calling the operation or using coercions on the arguments
          will allow you to apply the operation.
    
       Cannot find a definition or applicable library operation named /
          with argument type(s)
                                    IntegerMod(6)
                                    IntegerMod(6)
    
          Perhaps you should use "@" to indicate the required return type,
          or "$" to specify which version of the function you need.
    
    (11) -> Z100 := IntegerMod 100
    
       (11)  IntegerMod(100)
                                                                       Type: Type
    (12) -> n: Z100 := 0; for i in 1..100 repeat n := n + i::Z100; n
    
       (12)  50
                                                            Type: IntegerMod(100)
    
    
  8. Complex Numbers
    (1) -> Q := Fraction Integer
    
    
       (1)  Fraction(Integer)
                                                                       Type: Type
    (2) -> C := Complex Q
    
       (2)  Complex(Fraction(Integer))
                                                                       Type: Type
    (3) -> %i -- The imaginary unit is represented by %i.
    
       (3)  %i
                                                           Type: Complex(Integer)
    (4) -> r:C := 3+4*%i;   s:C := 7-2*%i;
    
                                                 Type: Complex(Fraction(Integer))
    (5) -> r+s
    
       (5)  10 + 2%i
                                                 Type: Complex(Fraction(Integer))
    (6) -> r*s
    
       (6)  29 + 22%i
                                                 Type: Complex(Fraction(Integer))
    (7) -> r/s
    
            13   34
       (7)  -- + -- %i
            53   53
                                                 Type: Complex(Fraction(Integer))
    (8) -> r^2
    
       (8)  - 7 + 24%i
                                                 Type: Complex(Fraction(Integer))
    (9) -> -- sqrt norm x is basically the same as |x|.
    (9) -> sqrt norm r
    
       (9)  5
                                                            Type: AlgebraicNumber
    (10) -> sqrt norm s
    
              +--+
       (10)  \|53
                                                            Type: AlgebraicNumber
    (11) ->  E := Expression Integer
    
       (11)  Expression(Integer)
                                                                       Type: Type
    (12) -> polar(x:C): Record(radius:AlgebraicNumber, arg: Expression Integer)_
    == [sqrt norm x,_
    (r:=real x; i:=imag x;_
    if r=0 then_
    if i=0 then error "argument cannot be computed"_
    else if i>0 then %pi/2_
    else -%pi/2_
    else (a := atan(i/r);_
    if r>0 then a else if i<0 then a-%pi else a+%pi))] Type: Void (13) -> polar r 4 (13) [radius= 5,arg= atan(-)] 3 Type: Record(radius: AlgebraicNumber,arg: Expression(Integer)) (14) -> polar s +--+ 2 (14) [radius= \|53 ,arg= - atan(-)] 7 Type: Record(radius: AlgebraicNumber,arg: Expression(Integer)) (15) -> polar(1+%i) +-+ %pi (15) [radius= \|2 ,arg= ---] 4 Type: Record(radius: AlgebraicNumber,arg: Expression(Integer)) (16) -> toComplex(rad:Q, phi:E):Complex(E) == rad*(cos phi + %i*sin(phi)) Type: Void (17) -> toComplex(2,%pi) Compiling function toComplex with type (Fraction(Integer),Expression (Integer)) -> Complex(Expression(Integer)) (17) - 2 Type: Complex(Expression(Integer)) (18) -> polar(-2) (18) [radius= 2,arg= %pi] Type: Record(radius: AlgebraicNumber,arg: Expression(Integer)) (19) -> toComplex(1,%pi/6) +-+ \|3 1 (19) ---- + - %i 2 2 Type: Complex(Expression(Integer)) (20) -> eq := (z-r)*(z-s) 2 (20) z + (- 10 - 2%i)z + 29 + 22%i Type: Polynomial(Complex(Fraction(Integer))) (21) -> solve(eq,z) (21) [z= 7 - 2%i,z= 3 + 4%i] Type: List(Equation(Fraction(Polynomial(Complex(Integer)))))
  9. Solving linear equations
    (1) -> e := [3*x+2*y-4*z, 2*x-3*y+z, x+2*y+z]
    
       (1)  [- 4z + 2y + 3x,z - 3y + 2x,z + 2y + x]
                                                  Type: List(Polynomial(Integer))
    (2) -> sol := first solve([e.1=-2, e.2=1/2, e.3=0])
    
                16      11      1
       (2)  [z= --,y= - --,x= - -]
                45      90      9
                              Type: List(Equation(Fraction(Polynomial(Integer))))
    (3) -> [subst(e.i, sol) for i in 1..3]
    
                 1
       (3)  [- 2,-,0]
                 2
                                                  Type: List(Expression(Integer))
    
« January 2025 »
January
MoTuWeThFrSaSu
12345
6789101112
13141516171819
20212223242526
2728293031
Upcoming Events
RISC Forum Jan 20, 2025 01:30 PM - 01:45 PM
RISC Forum Jan 27, 2025 01:30 PM - 01:45 PM
Previous events…
Upcoming events…