List of basic properties for Boolean algebras:

AJ:	$x \sqcup(y \sqcup z)=(x \sqcup y) \sqcup z$
AM:	$x \sqcap(y \sqcap z)=(x \sqcap y) \sqcap z$
CJ:	$x \sqcup y=y \sqcup x$
CM:	$x \sqcap y=y \sqcap x$
IJ:	$x \sqcup x=x$
IM:	$x \sqcap x=x$
ABS1:	$x \sqcup(x \sqcap y)=x$
ABS2:	$x \sqcap(x \sqcup y)=x$
D1:	$x \sqcup(y \sqcap z)=(x \sqcup y) \sqcap(x \sqcup z)$
D2:	$x \sqcap(y \sqcup z)=(x \sqcap y) \sqcup(x \sqcap z)$
M1:	$\overline{x \sqcup y}=\bar{x} \sqcap \bar{y}$
M2:	$\overline{x \sqcap y=\bar{x} \sqcup \bar{y}}$
ZJ:	$x \sqcup 0=x$
ZM:	$x \sqcap 0=0$
OJ:	$x \sqcup 1=1$
OM:	$x \sqcap 1=x$
CPJ:	$x \sqcup \bar{x}=1$
CPM:	$x \sqcap \bar{x}=0$
DN:	$\bar{x}=x$

Also sometimes included:

$$
\text { NE: } 0 \neq 1 .
$$

Axiom system for upper semilattices:

$$
\Sigma^{\mathrm{USL}}=\{\mathrm{AJ}, \mathrm{CJ}, \mathrm{IJ}\} .
$$

These axioms are independent and characterize upper semilattices; we say they form a basis for upper semilattices.

Axiom system for lattices: The first 8 identities above (up to including the absorption laws) are the basic properties of lattices, but we can do without the idempotent axioms. Accordingly, the following axiom system is a basis for lattices:

$$
\Sigma^{\mathrm{L}}=\{\mathrm{AJ}, \mathrm{AM}, \mathrm{CJ}, \mathrm{CM}, \mathrm{ABS} 1, \mathrm{ABS} 2\} .
$$

The idempotent laws can be derived in Σ^{L} :

$$
x \sqcup x=x \sqcup(x \sqcap(x \sqcup x))=x,
$$

using ABS1 and ABS2. None of the remaining axioms may be omitted, even if the idempotent laws were included.

Axiom systems for distributive lattices: This time we may omit quite a lot from the above list of basic properties. In fact, each of the following forms a basis:

$$
\begin{aligned}
& \Sigma_{1}^{\mathrm{DL}}=\{\mathrm{CJ}, \mathrm{CM}, \mathrm{~A} 1, \mathrm{D} 1\}, \\
& \Sigma_{2}^{\mathrm{DL}}=\{\mathrm{CJ}, \mathrm{CM}, \mathrm{~A} 2, \mathrm{D} 2\}, \\
& \left.\Sigma_{3}^{\mathrm{DL}}=\mathrm{CJ}, \mathrm{CM}, \mathrm{IM}, \mathrm{~A} 1, \mathrm{D} 2\right\}, \\
& \left.\Sigma_{4}^{\mathrm{DL}}=\mathrm{CJ}, \mathrm{CM}, \mathrm{IJ}, \mathrm{~A} 2, \mathrm{D} 1\right\} .
\end{aligned}
$$

Every axiom system for distributive lattices which contains only axioms from the above list of basic properties must at least contain one of $\Sigma_{1}^{\mathrm{DL}}, \ldots, \Sigma_{4}^{\mathrm{DL}}$. However, we can do even without the commutative laws if the distributive laws are modified as follows:

$$
\begin{aligned}
& \mathrm{D} 1^{\prime}: x \sqcup(y \sqcap z)=(z \sqcup x) \sqcap(y \sqcup x), \\
& \mathrm{D} 2^{\prime}: x \sqcap(y \sqcup z)=(z \sqcap x) \sqcup(y \sqcap x) .
\end{aligned}
$$

Then each of the following axiom systems is also a basis for distributive lattices, as shown by Sholander (1951):

$$
\begin{aligned}
& \Sigma_{5}^{\mathrm{DL}}=\left\{\mathrm{A} 1, \mathrm{D} 1^{\prime}\right\}, \\
& \Sigma_{6}^{\mathrm{DL}}=\left\{\mathrm{A} 2, \mathrm{D} 2^{\prime}\right\} .
\end{aligned}
$$

Axiom systems for Boolean algebras: In addition to axioms for distributive lattices it suffices to include CPJ and CPM; for instance:

$$
\begin{aligned}
& \Sigma_{1}^{\mathrm{BA}}=\left\{\mathrm{A} 1, \mathrm{D} 1^{\prime}, \mathrm{CPJ}, \mathrm{CPM}\right\}, \\
& \Sigma_{2}^{\mathrm{BA}}=\left\{\mathrm{A} 2, \mathrm{D} 2^{\prime}, \mathrm{CPJ}, \mathrm{CPM}\right\},
\end{aligned}
$$

If we use Σ_{1}^{DL} or Σ_{1}^{DL} for distributive lattices, then one of the commutative laws may be omitted:

$$
\begin{aligned}
& \Sigma_{3}^{\mathrm{BA}}=\{\mathrm{CJ}, \mathrm{~A} 1, \mathrm{D} 1, \mathrm{CPJ}, \mathrm{CPM}\} \\
& \Sigma_{4}^{\mathrm{BA}}=\{\mathrm{CM}, \mathrm{~A} 2, \mathrm{D} 2, \mathrm{CPJ}, \mathrm{CPM}\} .
\end{aligned}
$$

A different axiom system was introduced by Huntington 1933, which uses the Huntington equation

$$
\mathrm{HE}: \overline{\bar{x} \sqcup \bar{y}} \sqcup \overline{\bar{x} \sqcup y}=x .
$$

The following axiom system also characterizes Boolean algebras:

$$
\Sigma_{5}^{\mathrm{BA}}=\{\mathrm{AJ}, \mathrm{CJ}, \mathrm{HE}\}
$$

Of course, Σ_{5}^{BA} only concerns the operations \sqcup and ${ }^{-}$, so Huntington's result may be stated as follows: if a model $\left\langle A, \sqcup,{ }^{-}\right\rangle$satisfies Σ_{5}^{BA}, then it can be expanded to a Boolean algebra by defining $\sqcup, 0$ and 1 appropriately.
Robbins raised the question if HE may be replaced by its dual, which is called the Robbins equation:

$$
\mathrm{RE}: \overline{\overline{x \sqcup y} \sqcup \overline{x \sqcup \bar{y}}}=x .
$$

So the Robbins conjecture was that the axiom system

$$
\Sigma_{6}^{\mathrm{BA}}=\{\mathrm{AJ}, \mathrm{CJ}, \mathrm{RE}\}
$$

also characterizes Boolean algebras. Progress was made by S. Winkler in the 1980's. Robbins conjecture was proved 1996 by the automatic theorem proves EQP.

